Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1257, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341442

RESUMO

Electrochemical reduction of carbon dioxide into ethylene, as opposed to traditional industrial methods, represents a more environmentally friendly and promising technical approach. However, achieving high activity of ethylene remains a huge challenge due to the numerous possible reaction pathways. Here, we construct a hierarchical nanoelectrode composed of CuO treated with dodecanethiol to achieve elevated ethylene activity with a Faradaic efficiency reaching 79.5%. Through on in situ investigations, it is observed that dodecanethiol modification not only facilitates CO2 transfer and enhances *CO coverage on the catalyst surfaces, but also stabilizes Cu(100) facet. Density functional theory calculations of activation energy barriers of the asymmetrical C-C coupling between *CO and *CHO further support that the greatly increased selectivity of ethylene is attributed to the thiol-stabilized Cu(100). Our findings not only provide an effective strategy to design and construct Cu-based catalysts for highly selective CO2 to ethylene, but also offer deep insights into the mechanism of CO2 to ethylene.

2.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903767

RESUMO

The homogeneous distribution of carbon nanotubes (CNTs) in the Cu matrix and good interfacial bonding are the key factors to obtain excellent properties of carbon nanotube-reinforced Cu-based composites (CNT/Cu). In this work, silver-modified carbon nanotubes (Ag-CNTs) were prepared by a simple, efficient and reducer-free method (ultrasonic chemical synthesis), and Ag-CNTs-reinforced copper matrix composites (Ag-CNTs/Cu) were fabricated by powder metallurgy. The dispersion and interfacial bonding of CNTs were effectively improved by Ag modification. Compared to CNTs/Cu counterparts, the properties of Ag-CNTs/Cu samples were significantly improved, with the electrical conductivity of 94.9% IACS (International Annealed Copper Standard), thermal conductivity of 416 W/m·k and tensile strength (315 MPa). The strengthening mechanisms are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...